Politics versus ecological and environmental research: invitation to submit to Ideas in Ecology and Evolution #resist

Dear Colleagues,

Ideas in Ecology and Evolution would like to invite you to submit to a special issue entitled
‘Politics versus ecological and environmental research.’

The contemporary political climate has dramatically changed in some nations. Global change marches on, and changes within each and every country influence everyone. We need to march too and can do so in many ways. There has been extensive social media discussion and political activity within the scientific community. One particularly compelling discussion is best captured by this paraphrased exchange.

“Keep politics out of my science feeds.”
“I will keep politics out of my science when politics keeps out of science.”

The latter context has never existed, but the extent of intervention, falsification by non-scientists, blatant non-truths, and threat to science have never been greater in contemporary ecology and environmental science in particular.

Ideas in Ecology and Evolution is an open-access journal. We view the niche of this journal as a home for topics that need discussing for our discipline. Ideas are a beautiful opportunity sometimes lost by the file-drawer problem, and this journal welcomes papers without data to propose new ideas and critically comment on issues relevant to our field both directly and indirectly. Lonnie Aarssen and I are keen to capture some of the ongoing discussion and #resist efforts by our peers. We will rapidly secure two reviews for your contributions to get ideas into print now.

We welcome submissions that address any aspect of politics and ecology and the environment. The papers can include any of (but not limited to) the following formats: commentaries, solution sets, critiques, novel mindsets, strategies to better link ecology/environmental science to political discourse, analyses of political interventions, summaries of developments, and mini-reviews that highlight ecological/environmental science that clearly support an alternative decision.

Please submit contributions using the Open Journal System site here.

Warm regards,

Chris Lortie and Lonnie Aarssen.

A rule-of-thumb for chi-squared tests in systematic reviews

Rule

A chi-squared test with few observations is not a super powerful statistical test (note, apparently termed both chi-square and chi-squared test depending on the discipline and source). Nonetheless, this test useful in systematic reviews to confirm whether observed patterns in the frequency of study of a particular dimension for a topic are statistically different (at least according to about 4/10 referees I have encountered). Not as a vote-counting tool but as a means for the referees and readers of the review to assess whether the counts of approaches, places, species, or some measure used in set of primary studies differed. The mistaken rule-of-thumb is that <5 counts per cell violates the assumptions of chi-squared test. However, this intriguing post reminds that it is not the observed value but the expected value that must be at least 5 (blog post on topic and statistical article describing assumption). I propose that this a reasonable and logical rule-of-thumb for some forms of scientific synthesis such as systematic reviews exploring patterns of research within a set of studies – not the strength of evidence or effect sizes.

An appropriate rule-of-thumb for when you should report a chi-squared test statistic in a systematic review is thus as follows.

When doing a systematic review that includes quantitative summaries of frequencies of various study dimensions, the total sample size of studies summarized (dividend) divided by the potential number of differences in the specific level tested (divisor) should be at least 5 (quotient). You are simply calculating whether the expected values can even reach 5 given your set of studies and the categorical analysis of the frequency of a specific study dimension for the study set applied during your review process.

total number of studies/number of levels contrasted for specific study set dimension >= 5

[In R, I used nrow(main dataframe)/nrow(frequency dataframe for dimension); however, it was a bit clunky. You could use the ‘length’ function or write a new function and use a ‘for loop’ for all factors you are likely to test].

Statistical assumptions aside, it is also reasonable to propose that a practical rule-of-thumb for literature syntheses (systematic reviews and meta-analyses) requires at least 5 studies completed that test each specific level of the factor or attribute summarized.

Example

For example, my colleagues and I were recently doing a systematic review that captured a total of 49 independent primary studies (GitHub repo). We wanted to report frequencies that the specific topic differed in how it was tested by the specific hypothesis (as listed by primary authors), and there were a total of 7 different hypotheses tested within this set of studies.  The division rule-of-thumb for statistical reporting in a review was applied, 49/7 = 7, so we elected to report a chi-squared test in the Results of the manuscript.  Other interesting dimensions of study for the topic had many more levels such as country of study or taxa and violated this rule. In these instances, we simply reported the frequencies in the Results that these aspects were studied without supporting statistics (or we used much simpler classification strategies). A systematic review is a form of formalized synthesis in ecology, and these syntheses typically do not include effect size measure estimates in ecology (other disciplines use the term systematic review interchangeably with meta-analysis, we do not do so in ecology). For these more descriptive review formats, this rule seems appropriate for describing differences in the synthesis of a set studies topologically, i.e. summarizing information about the set of studies, like the meta-data of the data but not the primary data (here is the GitHub repo we used for the specific systematic review that lead to this rule for our team). This fuzzy rule lead to a more interesting general insight. An overly detailed approach to the synthesis of a set of studies likely defeats the purpose of the synthesis.

Tips for rapid scientific recordings

Preamble

If a picture is worth a thousand words, a video is worth 1.8 million words. Like all great summary statistics, this has been discussed and challenged (Huffington Post supporting this idea and a nice comment at Replay Science reminding the public it is really a figure of speech).

Nonetheless, short scientific recordings, posted online are an excellent mechanism to put a face to a name, share your inspirations in science, and provide the public with a sense of connection to scientists. It is a reminder that people do science and that we care. I love short videos that provide the viewer with insights not immediately evident in the scientific product. Video abstracts with slide decks are increasingly common. I really enjoy them. However, sometimes I do not get to see what the person looks like (only the slide deck is shown) or how they are reacting/emoting when they discuss their science. Typically, we are not provided with a sense why they did the science or why they care. I think short videos that share a personal but professional scientific perspective that supplements the product is really important. I can read the paper, but if clarifications, insights, implications, or personal challenges in doing the research were important, it would be great to hear about them.

In that spirit, here are some brief suggestions for rapid scientific communications using recordings.

Tips

  1. Keep the duration at less than 2 minutes. We can all see the slider at the bottom with time remaining, and if I begin to disconnect, I check it and decide whether I want to continue. If it is <2mins, I often persist.
  2. Use a webcam that supports HD.
  3. Position the webcam above you facing down. This makes for a better angle and encourages you to look up.
  4. Ensure that you are not backlit. These light angles generally lead to a darker face that makes it difficult for the viewer to see any expressions at all.
  5. Viewers will tolerate relatively poor video quality but not audio. Do a 15 second audio test to ensure that at moderate playback volumes you can be clearly understood.
  6. Limit your message to three short blocks of information. I propose the following three blocks for most short recordings. (i) Introduce yourself and the topic. (ii) State why you did it and why you are inspired by this research. (iii) State the implications of the research or activity. This is not always evident in a scientific paper for instance (or framed in a more technical style), and in this more conversational context, you take advantage of natural language to promote the desired outcome.
  7. Prep a list of questions to guide your conversation. Typically, I write up 5-7 questions that I suspect the audience might like to see addressed with the associated product/activity.
  8. Do not use a script or visual aids. This is your super short elevator pitch. Connect with the audience and look into the camera.
  9. Have a very small window with the recording on screen, near the webcam position, to gently self-monitor your movement, twitches, and gestures. I find this little trick also forces me to look up near the webcam.
  10. Post online and use social media to effectively frame why you did the recordings. Amplify the signal and use a short comment (both in the YouTube/Vimeo field) and with the social media post very lightly promoting the video.

Happy rapid recording!

Elements of a successful #openscience #rstats workshop

What makes an open science workshop effective or successful*?

Over the last 15 years, I have had the good fortune to participate in workshops as a student and sometimes as an instructor. Consistently, there were beneficial discovery experiences, and at times, some of the processes highlighted have been transformative. Last year, I had the good fortune to participate in Software Carpentry at UCSB and Software Carpentry at YorkU, and in the past, attend (in part) workshops such as Open Science for Synthesis. Several of us are now deciding what to attend as students in 2017. I have been wondering about the potential efficacy of the workshop model and why it seems that they are so relatively effective. I propose that the answer is expectations.  Here is a set of brief lists of observations from workshops that lead me to this conclusion.

*Note: I define a workshop as effective or successful when it provides me with something practical that I did not have before the workshop.  Practical outcomes can include tools, ideas, workflows, insights, or novel viewpoints from discussion. Anything that helps me do better open science. Efficacy for me is relative to learning by myself (i.e. through reading, watching webinars, or stuggling with code or data), asking for help from others, taking an online course (that I always give up on), or attending a scientific conference.

Delivery elements of an open science training workshop

  1. Lectures
  2. Tutorials
  3. Demonstrations
  4. Q & A sessions
  5. Hands-on exercises
  6. Webinars or group-viewing recorded vignettes.

Summary expectations from this list: a workshop will offer me content in more than one way unlike a more traditional course offering. I can ask questions right there on the spot about content and get an answer.

Content elements of an open science training workshop

  1. Data and code
  2. Slide decks
  3. Advanced discussion
  4. Experts that can address basic and advanced queries
  5. A curated list of additional resources
  6. Opinions from the experts on the ‘best’ way to do something
  7. A list of problems or questions that need to addressed or solved both routinely and in specific contexts when doing science
  8. A toolkit in some form associated with the specific focus of the workshop.

Summary of expectations from this list: the best, most useful content is curated. It is contemporary, and it would be a challenge for me to find out this on my own.

Pedagogical elements of an open science training workshop

  1. Organized to reflect authentic challenges
  2. Uses problem-based learning
  3. Content is very contemporary
  4. Very light on lecture and heavy on practical application
  5. Reasonably small groups
  6. Will include team science and networks to learn and solve problems
  7. Short duration, high intensity
  8. Will use an open science tool for discussion and collective note taking
  9. Will be organized by major concepts such as data & meta-data, workflows, code, data repositories OR will be organized around a central problem or theme, and we will work together through the steps to solve a problem
  10. There will be a specific, quantifiable outcome for the participants (i.e. we will learn how to do or use a specific set of tools for future work).

Summary of expectations from this list: the training and learning experience will emulate a scientific working group that has convened to solve a problem. In this case, how can we all get better at doing a certain set of scientific activities versus can a group aggregate and summarize a global alpine dataset for instance. These collaborative solving-models need not be exclusive.

Higher-order expectations that summarize all these open science workshop elements

  1. Experts, curated content, and contemporary tools.
  2. Everyone is focussed exclusively on the workshop, i.e. we all try to put our lives on hold to teach and learn together rapidly for a short time.
  3. Experiences are authentic and focus on problem solving.
  4. I will have to work trying things, but the slope of the learning curve/climb will be mediated by the workshop process.
  5. There will be some, but not too much, lecturing to give me the big picture highlights of why I need to know/use a specific concept or tool.

 

 

 

Review journals or journals with synthesis format contributions in EEB

Colleagues and I were checking through current journal listings that either explicitly focus on synthesis such as systematic reviews or include a section that is frequently well represented with synthesis contributions. Most journals in ecology, evolution, and environmental science that publish primary standard, research articles nonetheless also offer the opportunity for these papers too, but it can be less frequent or sometimes less likely to accept different forms of synthesis (i.e. systematic reviews in particular versus meta-analyses).

List

Diverse synthesis contributions very frequent
Conservation Letters (Letters)
Perspectives in Science
Perspectives in Plant Ecology, Evolution and Systematics
Diversity & Distributions
Ecology Letters
TREE
Oikos
Biological Reviews
Annual review of ecology, evolution, systematics
Letters to Nature
Frontiers in Ecology and the Environment
PLOS ONE (many systematic reviews)
Environmental Evidence
Biology Letters
Quarterly Review of Biology

Frequent synthesis contributions with some diversity in formats
Global Ecology and Biogeography
Annals of Botany
New Phytologist
Ecography
Ecological Applications
Functional Ecology
Proceedings of the the Royal Society B
Ecology and Evolution